
ReLU Version of Dense Networks

Ruey-An Shiu
Advisor: Prof. Chun-Hsiung Hsia

March 26, 2025

Abstract

This study investigates how replacing the sine coupling function with the Rectified Linear Unit
(ReLU), defined as max{0, sin(x)}, affects synchronization in Kuramoto oscillator networks. We
analyze both identical and non-identical oscillator scenarios across dense networks and two-group
social networks exhibiting internal competition and external attraction. Our findings demonstrate
that ReLU-based coupling significantly enhances synchronization, relying primarily on network
connectivity rather than on degree distribution or frequency similarity, in sharp contrast to the
classical Kuramoto model. We provide sufficient theoretical conditions for achieving synchroniza-
tion, validated by numerical simulations, emphasizing the robustness of the ReLU modification
against structural and frequency variations.

1 Introduction

The phenomenon of synchronization is widespread in the natural world. For example, in biological
systems, synchronization is observed in the coordinated chirping of crickets and the synchronous flash-
ing of fireflies. Beyond biology, synchronization is evident in the swinging of pendulums, the stability
of electrical grids, and the consistency of certain chemical reactions [2, 4, 33].

Synchronization is not only of interest from a biological or physical perspective but is also crucial
in various technological applications. In electrical engineering, the stability of power grids relies on
the synchronization of generators [13]. In neuroscience, the coordinated firing of neurons is essential
for proper brain function and for the rhythmic beating of the heart [5,14]. In chemistry, synchroniza-
tion can give rise to oscillatory reactions that are fundamental to certain biochemical processes [11].
Consequently, the study of synchronization spans multiple disciplines, each providing unique insights
into this complex phenomenon.

Among the mathematical models that describe synchronous behavior, the Kuramoto model, pro-
posed by Kuramoto in 1975, has received significant attention [25]. The classical Kuramoto model is
given by

θ̇i(t) = ωi +
K

N

N∑
ℓ=1

sin
(
θℓ(t)− θi(t)

)
, for t > 0 and i = 1, 2, . . . , N, (1.1)

where θi(t) is the phase of the ith oscillator, θ̇i(t) = dθi(t)
dt represents its frequency, ωi is its natural

frequency, N is the number of oscillators, and K is the coupling strength. The interaction term
sin
(
θℓ(t)− θi(t)

)
encapsulates the coupling between pairs of oscillators and is central to the emergence

of synchronization.
The Kuramoto model is particularly interesting because it exhibits a phase transition from inco-

herence to synchronization as the coupling strength K increases. When the phases of two oscillators
are close (i.e., the phase difference is less than π), the leading oscillator decelerates while the trailing
oscillator accelerates, thereby facilitating synchronization. This mechanism can lead to a collective
synchronized state in which all oscillators move in unison despite having different natural frequencies.

The Kuramoto model has been extensively studied in various contexts, including its applications
to different network topologies [23, 29], the effects of time delays [19, 20], and the influence of noise
[22]. To gain a deeper understanding of synchronization in more complex systems, several extensions
and modifications of the original model have been proposed. These include investigations into dense
networks [24,28,30,35,37,41], the incorporation of heterogeneous natural frequencies [6,7], the strong
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competition variant [21], weighted coupling [12], the two-group Kuramoto model [8, 15], and higher-
dimensional oscillators [17], each contributing valuable insights into the dynamics of synchronization.

For further analysis, we define the phase vector

Θ(t) =
(
θ1(t), θ2(t), . . . , θN (t)

)
.

We now introduce several definitions to formalize the concepts of phase and frequency synchronization.

Definition 1.1 (Complete Frequency Synchronization). Suppose Θ(t) is a solution to (1.1). Then,
Θ(t) is said to achieve complete frequency synchronization asymptotically if, for any 1 ≤ i, j ≤ N ,

lim
t→∞

∣∣∣θ̇i(t)− θ̇j(t)
∣∣∣ = 0.

Definition 1.2 (Complete Phase Synchronization). Suppose Θ(t) is a solution to (1.1). Then, Θ(t)
is said to achieve complete phase synchronization asymptotically if, for any 1 ≤ i, j ≤ N , there exists
an integer nij such that

lim
t→∞

∣∣∣θi(t)− θj(t)− 2πnij

∣∣∣ = 0.

Remark 1.3. Clearly, complete phase synchronization implies complete frequency synchronization;
hence, complete phase synchronization is a stronger condition.

Definition 1.4 (Diameter Function). For any X = (x1, x2, . . . , xN ) ∈ RN , the diameter of X is
defined as

D(X) := max
1≤i,j≤N

(
xi − xj

)
.

Observe that
lim
t→∞

D(Θ(t)) = 0

is equivalent to

lim
t→∞

∣∣∣θi(t)− θj(t)
∣∣∣ = 0 for all 1 ≤ i, j ≤ N.

Thus, to investigate phase synchronization, it suffices to analyze the asymptotic behavior of D(Θ(t)).
Similarly,

lim
t→∞

D
(
Θ̇(t)

)
= 0

is equivalent to

lim
t→∞

∣∣∣θ̇i(t)− θ̇j(t)
∣∣∣ = 0 for all 1 ≤ i, j ≤ N.

Hence, to study frequency synchronization, it is sufficient to examine the asymptotic behavior of
D(Θ(t)) and D

(
Θ̇(t)

)
(see [6–8,15,18–21]), an approach that we also adopt in this paper.

We first delve into the Kuramoto model on dense networks and explore its ReLU-modified version.
Following this, we integrate these concepts to present the ReLU-modified Kuramoto model on dense
networks and its application within social network models.

1.1 Homogeneous Kuramoto Model on Dense Networks

In 2012, Taylor [35] investigated the collective behavior of identical Kuramoto oscillators on a dense
network, modeled by

θ̇i(t) = ωi +
K

N

N∑
ℓ=1

Aiℓ sin
(
θℓ(t)− θi(t)

)
, for t > 0 and i = 1, 2, . . . , N, (1.2)

Under the homogeneous assumption, all oscillators share the same natural frequency (i.e., ωi = ω for
all i). The connectivity of the network is represented by the adjacency symmetry matrix A, whose
entries are defined as

Aij =

{
1 if oscillator i is coupled to oscillator j,

0 otherwise.
(1.3)
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By performing the change of variables θi(t) → θi(t) + ωt, we may assume without loss of generality
that ω = 0. Moreover, by rescaling the time variable t, we can assume K = 1. Consequently, (1.2)
simplifies to

θ̇i(t) =

N∑
ℓ=1

Aiℓ sin
(
θℓ(t)− θi(t)

)
, for t > 0 and i = 1, 2, . . . , N, (1.4)

Without loss of generality, we assume that Aii = 0 for all i, implying no self-coupling among oscillators.
Furthermore, it is assumed that every vertex is connected to at least µ(N − 1) other vertices, where N
is the total number of oscillators. We define the critical connectivity µc as the smallest value of µ for
which any network of N oscillators is globally synchronizing when µ ≥ µc. Conversely, for any µ < µc,
there exists at least one network configuration that may exhibit attractors other than the in-phase
synchronizing state. According to Taylor’s result [35],

µc ≤ 0.93.

This indicates that a sufficiently high level of connectivity guarantees global synchronization across
the network.

Subsequently, Ling et al. [28] combined a Lyapunov function approach with nonconvex optimization
methods to improve the upper bound of µc to below 0.7929, while Lu et al. [30] further reduced this
upper bound to 0.7889 using similar techniques. Kassabov et al. [24] later refined this bound to 0.75,
which is currently the best-known upper bound.

Regarding the lower bounds, Townsend et al. [37] proved in 2020 that µc > 0.6828 and observed
that at µ = 0.75 the coupling system exhibits notable spectral properties, suggesting that the critical
connectivity might be exactly 0.75. Yoneda et al. [41] improved this lower bound to µc > 0.6838 in
2021. Nonetheless, the exact value of µc remains unknown.

For the case of non-identical oscillators, Ling [27] established the following result:

Theorem 1.5 (Ling [27]). Consider the Kuramoto model (1.2) with natural frequencies {ωi}ni=1 sat-
isfying

∑n
i=1 ωi = 0. If

max
1≤i≤n

|ωi| < K

√
µ− 3

4
+ (µ− 1),

then there exists a unique frequency-synchronized solution.

Remark 1.6. Since max1≤i≤n |ωi| ≥ 0, Theorem 1.5 implies that µ > 3−
√
2

2 ≈ 0.7929, indicating that
a relatively high level of connectivity is required.

In both the identical and non-identical cases, a relatively high level of connectivity is typically
necessary to achieve synchronization. However, as will be demonstrated later, in the ReLU-modified
version of the model the mere connectivity of the matrix A is sufficient to achieve synchronization in
the identical case (see Theorem 1.10). Moreover, the relationship between Ω and µ can be considerably
relaxed in the non-identical case (see Theorem 1.11).

Next, we explore the ReLU version of the Kuramoto model.

1.2 ReLU Version of the Kuramoto Model

In the ReLU version of the Kuramoto, we consider max{0, sin(x)} instead of sin(x) in (1.1). That is,

θ̇i(t) = ωi +
K

N

N∑
ℓ=1

max{0, sin(θℓ(t)− θi(t))}, for t > 0 and i = 1, 2, . . . , N, (1.5)

The intuition is that the oscillator in the front will not chase the one behind but will stay in place and
wait. This implies a purely competitive coupling system.

This type of dynamic coupling has been explored in the studies of Yang et al. [39, 40] through
numerical experiments. However, research on this variant of the Kuramoto model remains limited,
with Hsia and Tsai [21] being among the few who have further investigated this aspect. They introduce
a variation termed the Strong Competition (SC) Kuramoto Model, akin to the ReLU model.

The classical Kuramoto model’s analysis often leverages the oddness of the sine function, allowing
the use of tools like the Lyapunov function [10, 18, 38] or the order parameter [24, 27, 28]. However,
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the ReLU version lacks this symmetry, making such methods less straightforward. To address this
challenge, Hsia and Tsai [21] demonstrate the existence of a well-order among the oscillators, implying
that they eventually align in an order corresponding to their natural frequencies. This concept is
integral to our approach, and we will follow a similar idea in our analysis (see Step 1 in Theorem 1.10
and Lemma 4.2). Their observation leads to the formulation of the following theorems:

Theorem 1.7 (Hsia and Tsai [21]). Given Θ(t) as a solution to (1.5) with D(Θ(0)) < π and all ωi

are identical, then
lim
t→∞

D(Θ(t)) = 0,

implying that the oscillators achieve complete phase synchronization asymptotically.

Theorem 1.8 (Hsia and Tsai [21]). Assume D(Ω) < NK sinα for some α ∈ (0, π/2). Let Θ(t) be a
solution to (1.5) with D(Θ(0)) < π − δ, then

lim
t→∞

θ̇i(t) = max{ω1, ω2, . . . , ωN}, for i = 1, 2, 3, . . . , N.

Remark 1.9. (a) In Theorem 1.7, similar to Section 1.1, by changing variables, we may assume
K = 1 and ωi = 0 for i = 1, 2, . . . , N .

(b) In the language of networks, the conditions of the theorem imply that Aij = 1 for all 1 ≤ i < j <
N , i.e., µ = 1.

(c) Theorem 1.7 and Theorem 1.8 are special cases of our Theorem 1.10 and Theorem 1.11, respec-
tively.

1.3 ReLU Version of the Kuramoto Model on Dense Network

We are now prepared to introduce our model and results. By combining the dense network configuration
with the ReLU modification of the coupling function, we consider the following system:

θ̇i(t) = ωi +

N∑
ℓ=1

Aiℓ max{0, sin(θℓ(t)− θi(t))}, for t > 0 and i = 1, 2, . . . , N, (1.6)

where A is the adjacency matrix defined in (1.3) without the requirement of symmetry. We then
proceed to present the following results.

Theorem 1.10. Assume D(Ω) = 0. Given Θ(t) solves (1.6) with D(Θ(0)) < π and A is connected.
Then Θ(t) achieves complete phase synchronization asymptotically. Moreover,

lim
t→∞

θi(t) = max{θ1(0), θ2(0), . . . , θN (0)}, for all i = 1, 2, . . . , N. (1.7)

Theorem 1.11. Let 0 < α < π
2 , and suppose A is connected. Furthermore, we assume that the

connectivity degree µ and the natural frequencies satisfy

D(Ω) < µN sinα. (1.8)

Let Θ(t) be a solution of (1.6) with

D(Θ(0)) < π − α, (1.9)

then

lim
t→∞

θ̇i(t) = max{ω1, ω2, . . . , ωN}, for all i = 1, 2, . . . , N. (1.10)

This implies that the system achieves frequency synchronization, with all oscillators eventually con-
verging to the largest natural frequency.
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1.4 Social Network

In this paper, we extend the Kuramoto model by incorporating a ReLU function within a two-group
structure. The two-group Kuramoto model has been extensively studied, particularly regarding at-
tractive and repulsive interactions [15, 31, 36], single-oscillator connections between groups [8], and
higher-order configurations involving three or more groups [8].

We introduce a novel social network model consisting of two groups, with the first group containing
n members and the second group comprising m members:

Θ(t) = (θ1(t), θ2(t), . . . , θn(t)),

Φ(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t)).

In the context of family dynamics, siblings often compete for the distribution of parental resources.
However, when they face collective family responsibilities, such as caring for aging parents or sup-
porting younger family members, cooperation tends to emerge. This balance between competition
and cooperation is a recurring theme in the fields of family economics, labor economics, development
economics, and sociology [1,3,9,16,26,32,34]. In contrast to the intense repulsive interactions observed
in other models [15,31,36], the competition within these family structures tends to be more moderate.

Our model reflects these dynamics by assuming that members within each group are strongly
interconnected, resulting in significant intra-group competition. At the same time, there is an inherent
attraction between members of different groups, capturing the interplay of competitive and cooperative
behaviors across generational lines. This nuanced interaction is formalized in the following two-group
Kuramoto model:


θ̇i(t) = ωi +

K

N

(
n∑

ℓ=1

max{0, sin(θℓ − θi)}+
m∑
ℓ=1

sin(ϕℓ − θi)

)
, i = 1, 2, . . . , n,

ϕ̇j(t) = νj +
K

N

(
m∑
ℓ=1

max{0, sin(ϕℓ − ϕj)}+
n∑

ℓ=1

sin(θℓ − ϕj)

)
, j = 1, 2, . . . ,m,

(1.11)

where N = n+m is the total number of oscillators, K > 0 is the coupling strength, and ωi and νj are
the natural frequencies for the oscillators θi and ϕj , respectively.

For convenience, we denote

Ω1 = (ω1, ω2, . . . , ωn),

Ω2 = (ν1, ν2, . . . , νm).

We shall investigate the synchronization properties of this two-group Kuramoto model.

Theorem 1.12. Let 0 < α < π
2 . Suppose the coupling strength and the natural frequencies satisfy

D(Ω1,Ω2) <
K

N
min{n,m} sinα. (1.12)

If (Θ(t),Φ(t)) is a solution of (1.11) with initial conditions satisfying

D(Θ(0),Φ(0)) < π − α, (1.13)

then
lim
t→∞

D(Θ̇(t), Φ̇(t)) → 0.

Hence the oscillators (Θ(t),Φ(t)) achieve frequency synchronization.

This paper is organized as follows. In Section 2, we prove Theorem 1.10. Section 3 establishes
the existence of the leading oscillator, which we then use to prove Theorem 1.11. In Section 4, we
demonstrate the well-order lemma and prove Theorem 1.12. Finally, Section 5 provides numerical
examples to illustrate our theorems and offers a comparison with the classical Kuramoto model.
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2 Identical Oscillators on Dense Networks

In this section, we focus on the synchronization of the homogeneous ReLU version of the Kuramoto
model on dense networks and provide a proof for Theorem 1.10. The proof is built upon the key
properties of monotonicity and boundedness of the phase differences among the oscillators.

Proof of Theorem 1.10. Since D(Ω) = 0, without loss of generality, we may assume

ωi = 0, for all i = 1, 2, . . . , N. (2.1)

Additionally, we can rearrange the indices such that

θ1(0) ≤ θ2(0) ≤ . . . ≤ θN (0). (2.2)

Here, we assume that the initial conditions θi(0) for i = 1, 2, . . . , N are not all identical; otherwise, the
oscillators would have already achieved complete phase synchronization asymptotically.

Define Ñ as the biggest index for which θi(0) < θN (0), namely,

Ñ := max{1 ≤ ℓ ≤ N : θℓ(0) < θN (0)}, (2.3)

given that θ1(0) < θN (0), the existence of such Ñ is guaranteed.
Step 1: Since ωi = 0 for i = 1, 2, . . . , N , {θℓ(t)}Nℓ=1 is uniformly bounded below by θ1(0). We first

establish that the set {θℓ(t)}Nℓ=1 is uniformly bounded above by θN (0) for t ≥ 0. Suppose this is not
the case. Let

t̃ := inf{t ≥ 0 : θℓ(t) ≥ θN (0) for some ℓ = 1, 2, . . . , Ñ} < ∞, (2.4)

and j̃ denotes the corresponding oscillator. This implies that θj̃ is the first oscillator among the first

Ñ oscillators that reaches θN (0) at time t̃.
For all times t < t̃, it follows that sin(θj(t) − θk(t)) < 0 for each j = 1, 2, . . . , Ñ and each k =

Ñ + 1, . . . , N . Consequently,

θ̇k(t) =

N∑
ℓ=Ñ+1

Akℓ max{0, sin(θℓ(t)− θk(t))} = 0, (2.5)

for all t < t̃. This indicates that θk(t) remains at θN (0) until time t̃.
Given that t̃ is the first instance when any of the first Ñ oscillators reaches θN (0), there exists

ε > 0 such that

θj̃(t) ≥ θj(t), for all t ∈ [t̃− ε, t̃) and for each j = 1, 2, . . . , Ñ . (2.6)

In the interval [t̃− ε, t̃), the dynamics of θj̃(t) is governed by

0 < θ̇j̃(t) =

N∑
ℓ=Ñ+1

Aj̃ℓ max{0, sin(θℓ(t)− θj̃(t))} =

N∑
ℓ=Ñ+1

Aj̃ℓ sin(θℓ(0)− θj̃(t)) = q sin(θN (0)− θj̃(t)),

(2.7)

where we have used the fact that 1 ≤ q :=
∑N

ℓ=Ñ+1 Aj̃ℓ ≤ N − Ñ .
Solving (2.7) by separation of variables yields

t =
log(cos(

θN (0)−θj̃(t)

2 ))− log(sin(
θN (0)−θj̃(t)

2 ))

q
+ C, (2.8)

for some constant C. However, taking t → t̃ results in a contradiction since the right-hand side tends
to infinity and the left-hand side remains finite.

Inferring from (1.6) and (2.1), we see that θ̇i(t) ≥ 0, which implies that θi(t) is increasing. Since
θi(t) is increasing and bounded above by θN (0), the completeness of the real numbers guarantees the
following result.

Conclusion 2.1. For any 1 ≤ i ≤ N , limt→∞ θi(t) exists.
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Step 2: Next, we show that limt→∞ θ̇i(t) = 0 for all 1 ≤ i ≤ N . Under the assumption (2.1), by
taking the limit of both sides of (1.6) as t → ∞, we have

lim
t→∞

θ̇i(t) =

N∑
ℓ=1

Aiℓ max{0, sin( lim
t→∞

θℓ(t)− lim
t→∞

θi(t))}, (2.9)

which indicates the existence of limt→∞ θ̇i(t). Moreover, the existence of a nonzero limit would con-
tradict Conclusion 2.1. Hence, limt→∞ θ̇i(t) = 0 exists for all 1 ≤ i ≤ N .

Step 3: Finally, we shall prove that any two connected oscillators converge to the same value.
Assume oscillators θi and θj are connected, i.e., there is a path connecting θi and θj . Suppose

θi = θV0 , θV1 , ..., θVn = θj , (2.10)

and
AVkVk+1

= 1, for all k = 0, 1, ..., n− 1. (2.11)

Fixed 1 ≤ k ≤ n− 1, suppose without loss of generality that

lim
t→∞

θVk+1
(t) ≥ lim

t→∞
θVk

(t). (2.12)

Then,
lim
t→∞

θ̇Vk
(t) ≥ sin( lim

t→∞
θVk+1

(t)− lim
t→∞

θVk
(t)). (2.13)

Since the left-hand side equals zero and θVk+1
(t) − θVk

(t) < π, this implies that limt→∞ θVk
(t) =

limt→∞ θVk+1
(t), thus

lim
t→∞

θi(t) = lim
t→∞

θV0(t) = lim
t→∞

θV1(t) = . . . = lim
t→∞

θVn(t) = lim
t→∞

θVj (t). (2.14)

This proves the claim.
Therefore, all oscillators converge to a common value since the matrix A is connected. That is,

Θ(t) achieves a complete phase synchronization asymptotically. On the other hand, we notice that

θN (t) = θN (0), for all t ≥ 0, (2.15)

which implies (1.7).

3 Non-identical Oscillators on Dense Networks

In this section, we provide the proof of Theorem 1.11. Without loss of generality, we assume that the
natural frequencies are in the following order

0 = ω1 ≥ ω2 ≥ . . . ≥ ωN .

We define

N∗ := max{1 ≤ ℓ ≤ N : ωℓ = 0}. (3.1)

If N∗ = N , the scenario reduces to the case where all frequencies are identical, and the result of
Theorem 1.11 follows directly from Theorem 1.10 by an appropriate change of variables. Consequently,
we shall concentrate on the case where N∗ < N , which introduces non-identical frequencies into the
system.

We first introduce several auxiliary lemmas that will be employed in the proof of Theorem 1.11.

Lemma 3.1. Let 0 < α < π
2 . Suppose the coupling strength and the natural frequencies satisfy

D(Ω) < µN sinα. (3.2)

If Θ(t) is a solution of (1.6) with initial conditions satisfying

D(Θ(0)) < π − α, (3.3)

then

D(Θ(t)) < α, for all t > T :=
π − 2α

µN sinα−D(Ω)
. (3.4)
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Proof. Assume that at some moment t0 ≥ 0, we have α < D(Θ(t0)) < π − α. Suppose D(Θ(t0)) =
θk(t0)− θi(t0) for some k, i ∈ {1, 2, . . . , N}. Then,

θi(t0) ≤ θℓ(t0) ≤ θk(t0), for all 1 ≤ ℓ ≤ N.

Therefore,

θ̇k(t0)− θ̇i(t0) = ωk − ωi −
N∑
ℓ=1

Aiℓ sin(θℓ(t0)− θi(t0))

≤ D(Ω)−
N∑
ℓ=1

Aiℓ sin(θℓ(t0)− θi(t0))

≤ D(Ω)− µN sinα

< 0. (3.5)

This inequality indicates that D(Θ(t)) decays at a rate greater than µN sinα − D(Ω). This implies
(3.4).

Next, we show that there is a leading oscillator.

Lemma 3.2. Let Θ(t) be a solution of (1.6) with initial conditions satisfying (3.2) and (3.3). Then,
there exists an index 1 ≤ i ≤ N∗ such that

θi(t) ≥ θj(t), for all 1 ≤ j ≤ N and t ≥ T ∗ :=
π − 2α

µN sinα−D(Ω)
+

α

−ωN∗+1
. (3.6)

Proof. Step 1: Let T be as defined in (3.4). We shall first prove that

max
1≤ℓ≤N∗

{θℓ(t)} > max
N∗+1≤ℓ≤N

{θℓ(t)}, for all t ≥ T ∗. (3.7)

To establish this, we formulate the following claim.

Claim 3.3. If there exists some moment t1 ≥ T such that max1≤ℓ≤N∗{θℓ(t1)}−maxN∗+1≤ℓ≤N{θℓ(t1)} >
0, then it follows that

max
1≤ℓ≤N∗

{θℓ(t)} − max
N∗+1≤ℓ≤N

{θℓ(t)} > 0, for all t ≥ t1. (3.8)

Assume, on the contrary, that this is not the case. Let t = t2 > t1 be the first moment such that

max
1≤i≤N∗

{θi(t)} = max
N∗+1≤j≤N

{θj(t)}.

Suppose max1≤ℓ≤N∗{θℓ(t1)} = θj(t1) for some 1 ≤ j ≤ N∗ and maxN∗+1≤ℓ≤N{θℓ(t1)} = θk(t1) for
some N∗ + 1 ≤ k ≤ N . Then, there exists ε > 0 such that

θj(t)− θk(t) > 0, for all t ∈ [t2 − ε, t2) and θj(t2) = θk(t2). (3.9)

Consequently,

θ̇j(t2)− θ̇k(t2) ≤ 0. (3.10)

On the other hand, since

max
1≤ℓ≤N∗

{θℓ(t2)} = θj(t2) = θk(t2) = max
N∗+1≤ℓ≤N

{θℓ(t2)}, (3.11)

we have

sin(θℓ(t2)− θj(t2)) ≤ 0, (3.12)

sin(θℓ(t2)− θk(t2)) ≤ 0, (3.13)

for all 1 ≤ ℓ ≤ N .
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Subtracting the derivatives of the j-th and k-th oscillators from (1.6) yields

θ̇j(t2)− θ̇k(t2) = ωj − ωk = −ωk > 0, (3.14)

which contradicts (3.10). This proves the claim.
Next, consider the scenario where max1≤ℓ≤N∗{θℓ(t)} ≤ maxN∗+1≤ℓ≤N{θℓ(t)} for some t ≥ T .

Suppose that max1≤ℓ≤N∗{θℓ(t)} = θj for some 1 ≤ j ≤ N∗ and maxN∗+1≤ℓ≤N{θℓ(t)} = θk for some
N∗ + 1 ≤ k ≤ N . By Lemma 3.1, we know that D(Θ(t)) < α. Thus,

θ̇k(t)− θ̇j(t) = (ωk − ωj)−
N∑
ℓ=1

Ajℓ max{0, sin(θℓ(t)− θj(t))}

≤ ωk ≤ ωN∗+1. (3.15)

This observation suggests that max1≤ℓ≤N∗{θℓ(t)} − maxN∗+1≤ℓ≤N{θℓ(t)} decreases at a rate faster
than −ωN∗+1. This implies (3.7).

Step 2: By (3.1), we see that ω1 = ω2 = . . . = ωN∗ = 0. Without loss of generality, we may assume
that

θ1(T
∗) = max

1≤ℓ≤N∗
{θℓ(T ∗)}.

Using an argument analogous to that in Step 2 of Theorem 1.10, which established that Θ(t) is
uniformly bounded above, we deduce that for every 1 ≤ i ≤ N the oscillator θi cannot reach θ1 unless

θi(T
∗) = θ1(T

∗) and ωi = 0.

This completes the proof of the lemma.

Given the non-differentiable nature of the max function, it becomes crucial to use its right derivative
instead of the conventional derivative for analysis. The right derivative of a real-valued function f ,
defined over an open subset U ⊆ R, is calculated at any point x within U as follows, provided the limit
exists:

∂+f(x) = lim
h→0+

f(x+ h)− f(x)

h
, for all x ∈ U.

Building on this concept, we employ a lemma referenced in [21].

Lemma 3.4. Consider an open set U ⊆ R and a set of continuous functions f1, f2, . . . , fn, each
possessing a defined right derivative. Define F (x) = max1≤i≤n fi(x). It follows that the right derivative
of F at any point x ∈ U is given by

∂+F (x) = max
i∈Ix

∂+fi(x),

where Ix is defined as {i : 1 ≤ i ≤ n, F (x) = fi(x)}.

Next, we prove the following key lemma, which implies Theorem 1.11.

Lemma 3.5. Under the assumption of Theorem 1.11, we define

f(t) = max
1≤ℓ≤N

{θ̇ℓ(t)}, (3.16)

g(t) = min
1≤ℓ≤N

{θ̇ℓ(t)}. (3.17)

Then,

f̄ := lim
t→∞

f(t) = ḡ := lim
t→∞

g(t) = ω1 = max{ω1, ω2, . . . , ωN}, (3.18)

which implies that

lim
t→∞

θ̇i(t) = ω1 = max{ω1, ω2, . . . , ωN}, for all i = 1, 2, . . . , N. (3.19)
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Proof. Step 1. We show that f̄ exists in this step. Let T ∗ be defined in (3.6). For any fixed t ≥ T ∗,
suppose f(t) = θ̇i(t) for some 1 ≤ i ≤ N .

Inferring from Lemma 3.4,

∂+ max {0, sin (θℓ(t)− θi(t))}

=


cos (θℓ(t)− θi(t))

(
θ̇ℓ(t)− θ̇i(t)

)
if sin (θℓ(t)− θi(t)) > 0;

max
{
0, cos (θℓ(t)− θi(t))

(
θ̇ℓ(t)− θ̇i(t)

)}
if sin (θℓ(t)− θi(t)) = 0;

0 if sin (θℓ(t)− θi(t)) < 0.

(3.20)

From Lemma 3.1, cos (θℓ(t)− θi(t)) > cosα > 0. Also, by the definition of i,
(
θ̇ℓ(t)− θ̇i(t)

)
≤ 0 for

all 1 ≤ ℓ ≤ N .
Hence we may conclude that,

∂+f(t) =

N∑
ℓ=1

Aiℓ∂+ max{0, sin(θℓ(t)− θi(t))} ≤ 0. (3.21)

Additionally, f(t) is bounded below by ωN . Hence, by the completeness of the real numbers, f̄ exists.
Similarly, ḡ exists.

Step 2: We assert that if f̄ = 0, then ḡ = 0. For the sake of contradiction, assume that ḡ ̸= 0.
Since f̄ = 0, it follows that ḡ < 0. By the continuity of the functions f and g, there exists a moment
T ′ > 0 such that for all t ≥ T ′ the following inequalities hold:

0 ≤ f(t) ≤ − ḡ

2(N − 2)
, (3.22)

2ḡ ≤ g(t) ≤ ḡ. (3.23)

Then, for any t ≥ max{T ′, T ∗}, we have

N∑
ℓ=2

θ̇ℓ(t) ≤ g(t) + (N − 2)f(t) ≤ ḡ − ḡ

2
≤ ḡ

2
. (3.24)

Integrating (3.24) over the interval[
max{T ′, T ∗}, max{T ′, T ∗} − 2(N − 2)α

ḡ

]
,

we obtain

N∑
ℓ=2

(
θℓ

(
max{T ′, T ∗} − 2(N − 2)α

ḡ

)
− θℓ

(
max{T ′, T ∗}

))
=

∫ max{T ′,T∗}− 2(N−2)α
ḡ

max{T ′,T∗}

N∑
ℓ=2

θ̇ℓ(t) dt ≤ −(N − 2)α.

(3.25)

By the pigeonhole principle, there exists at least one oscillator, say θℓ̃(t), for which∣∣∣∣θℓ̃(max{T ′, T ∗} − 2(N − 2)α

ḡ

)
− θℓ̃

(
max{T ′, T ∗}

)∣∣∣∣ ≥ α. (3.26)

However, by Lemma 3.2, there exists a leading oscillator θ1 with natural frequency zero, implying that
its phase remains constant for all t ≥ T ∗.

By applying the triangle inequality in conjunction with (3.26), we deduce that either

D
(
Θ
(
max{T ′, T ∗}

))
≥ θ1(max{T ′, T ∗})− θℓ̃(max{T ′, T ∗}) ≥ α or (3.27)

D
(
Θ
(
max{T ′, T ∗} − 2(N − 2)α

ḡ

))
≥ θ1(max{T ′, T ∗} − 2(N − 2)α

ḡ
)− θℓ̃(max{T ′, T ∗} − 2(N − 2)α

ḡ
)

≥ α. (3.28)

which contradicts Lemma 3.1. Therefore, our assumption is false, and we conclude that ḡ = 0.
Step 3: In this step, we consider that f̄ > 0 and t ≥ T ∗.
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Claim 3.6. If θ̇i(t) > 0 for some index i, then the set

Ci(t) := { 1 ≤ ℓ ≤ N : θℓ(t) > θi(t) and Aiℓ = 1 } (3.29)

is nonempty.

Indeed, since

0 < θ̇i(t) = ωi +

N∑
ℓ=1

Aiℓ max{0, sin(θℓ(t)− θi(t))}, (3.30)

and ωi ≤ 0, we conclude that

N∑
ℓ=1

Aiℓ max{0, sin(θℓ(t)− θi(t))} > 0, (3.31)

which implies Ci(t) ̸= ∅.
To reach a contradiction, our strategy is to use Claim 3.6 to identify a sequence of oscillators whose

phases increase while their frequencies remain positive.
Define a1(t) by

f(t) = θa1(t)(t). (3.32)

If multiple indices satisfy this equality, we select the oscillator that, over the subsequent short time
interval, continues to have the highest frequency; by continuity, such a choice is well defined. Similarly,
if the same situation recurs later, the same selection rule is applied. Next, define

b2(t) = min
{
θ̇a1(t)(t)− θ̇ℓ(t) : ℓ ∈ Ca1(t)(t)

}
, (3.33)

a2(t) = argmin
{
θ̇a1(t)(t)− θ̇ℓ(t) : ℓ ∈ Ca1(t)(t)

}
. (3.34)

Since θa1(t)(t) has the maximum frequency, b2(t) is nonnegative. Moreover, by the selection of a2(t)

and the continuity of θ̇i(t) for 1 ≤ i ≤ N , it follows that b2(t) is right continuous.
By Lemma 3.1 and (3.20), we deduce that

∂+f(t) ≤ Aa1(t)a2(t) ∂+ max
{
0, sin

(
θa2(t)(t)− θa1(t)(t)

)}
≤ − cosαb2(t). (3.35)

Thus, f(t) decreases at a rate of at least cosαb2(t). Since f̄ exists and b2(t) is right continuous, it
follows that cosαb2(t) is integrable. Moreover, because b2(t) is nonnegative, the set

I1 :=
{
t ≥ T ∗ : b2(t) ≥

f̄

N

}
(3.36)

has finite measure. We also define

J1 :=
{
t ≥ T ∗ : b2(t) <

f̄

N

}
. (3.37)

Then,

θ̇a2(t)(t) = f(t)− b2(t) ≥ f̄ − f̄

N
> 0 for all t ∈ J1. (3.38)

By Claim 3.6, Ca2(t)(t) is nonempty.
Therefore, we may define

b3(t) = min
{
θ̇a2(t)(t)− θ̇ℓ(t) : ℓ ∈ Ca2(t)(t)

}
, (3.39)

a3(t) = argmin
{
θ̇a2(t)(t)− θ̇ℓ(t) : ℓ ∈ Ca2(t)(t)

}
. (3.40)
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Similarly, b3(t) is right continuous. As is customary, we define the positive and negative parts of b3(t)
by

b+3 (t) = max{0, b3(t)}, (3.41)

b−3 (t) = max{0, −b3(t)}, (3.42)

so that

b3(t) = b+3 (t)− b−3 (t). (3.43)

Claim 3.7. Both b+3 (t) and b−3 (t) are integrable; hence, b3(t) is integrable as well.

Since θa1(t)(t) has the maximum frequency, we have

θ̇a1(t)(t)− b2(t)− b+3 (t) + b−3 (t) = θ̇a1(t)(t)− b2(t)− b3(t) = θ̇a3(t)(t) ≤ θ̇a1(t)(t). (1010)

This implies that

0 ≤ b−3 (t) ≤ b2(t). (3.44)

Since b2(t) is integrable and b3(t) is right continuous, it follows that b
−
3 (t) is integrable too.

From (1.6), we obtain

|θ̇i(t)| ≤ M := N − min
1≤i≤N

ωi for all t > 0 and i = 1, 2, . . . , N. (3.45)

Hence,

|θ̇i(t)− θ̇j(t)| ≤ 2M, for all t > 0 and 1 ≤ i, j ≤ N. (3.46)

In particular,

b3(t) ≤ 2M, for all t. (3.47)

Partition the set {t : t ≥ T ∗} as

{t : t ≥ T ∗} = S1 ∪ S2 ∪ S3, (3.48)

where

S1 = I1, (3.49)

S2 = J1 ∩ {t : b3(t) ≤ 0}, (3.50)

S3 = J1 ∩ {t : b3(t) > 0}. (3.51)

Combining with (1.6), (3.20) and (3.46), for t ∈ S1 we have

|∂+θ̇a2(t)(t)| ≤ NM. (3.52)

For t ∈ S2, θa2(t)(t) is increasing and

|∂+θ̇a2(t)(t)| ≤ Nb−3 (t). (3.53)

For t ∈ S3, θa2(t)(t) is decreasing and

|∂+θ̇a2(t)(t)| ≥ cosαb+3 (t). (3.54)

Suppose that ∫ ∞

0

cosα b+3 (t) dt = ∞. (3.55)
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Then, there exists T0 > T ∗ such that∫ T0

T∗
cosα b+3 (t) dt >

NM
∫∞
0

1S1(t) dt+
∫∞
0

N b−3 (t) dt+ 2M

cosα
. (3.56)

By combining (3.52), (3.53), (3.54) and (3.56), we have

θ̇a2
(T0)− θ̇a2

(T ∗) =

∫ T0

T∗
∂+θ̇a2(t)(t) dt

≤
∫ T0

T∗
NM1S1(t) dt+

∫ T0

T∗
N b−3 (t)1S2(t) dt−

∫ T0

T∗
cosα b+3 (t)1S2(t) dt

< NM

∫ ∞

0

1S1
(t) dt+

∫ ∞

0

N b−3 (t) dt− cosα×
NM

∫∞
0

1S1(t) dt+
∫∞
0

N b−3 (t) dt+ 2M

cosα

= −2M, (3.57)

where 1Si(t) denotes the indicator function of Si, this contradicts (3.45).
Therefore, we must have ∫ ∞

0

cosα b+3 (t) dt < ∞, (3.58)

which completes the proof of the claim.
Now, we define

I2 :=
{
t ≥ T ∗ : b3(t) ≥

f̄

N

}
, (3.59)

J2 :=
{
t ≥ T ∗ : b3(t) <

f̄

N

}
. (3.60)

By Claim 3.7, the measure of I2 is finite, which implies that J1∩J2 is nonempty. Therefore, according
to the definitions of J1 and J2,

θ̇a3(t)(t) = f(t)− b2(t)− b3(t) > 0, for all t ∈ J1 ∩ J2. (3.61)

By iterating the above procedure, we can construct (N +1) distinct oscillators for some t, each with a
positive frequency. This, however, is impossible because there are only N oscillators. Hence, we obtain
the contradiction f̄ > 0, which forces f̄ = 0.

Conclusion 3.8. Since the maximum frequency and the minimum frequency converge to ω1, it follows
that all the frequencies converge to ω1. Consequently, frequency synchronization occurs, thereby proving
Theorem 1.11.

4 Social Network

In this section, we focus on the social network model described by (1.11) and proceed with the proof
of Theorem 1.12. We begin with several auxiliary lemmas.

Lemma 4.1. Let 0 < α < π
2 . Suppose the coupling strength and the natural frequencies satisfy

D(Ω1,Ω2) <
K

N
min{n,m} sinα. (4.1)

If (Θ(t),Φ(t)) is a solution of (1.11) with initial conditions satisfying

D(Θ(0),Φ(0)) < π − α, (4.2)

then
D(Θ(t),Φ(t)) < π − α, for all t > 0. (4.3)
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Moreover, there exists a positive number T such that

D(Θ(t),Φ(t)) < α for all t > T :=
π − 2α

K
N min{n,m} sinα−D(Ω1,Ω2)

. (4.4)

Proof. Step 1: We prove (4.2) in this step. To do so, we employ a proof by contradiction. Let t0
denote the first moment at which D(Θ(t),Φ(t)) attains the value π − α. We consider two cases.

Case 1: Suppose D(Θ(t0),Φ(t0)) = θk(t0)−θi(t0) for some k, i ∈ {1, 2, . . . , n} (the symmetric case
D(Θ(t0),Φ(t0)) = ϕk(t0)− ϕi(t0) for some k, i ∈ {1, 2, . . . ,m} is similar). Clearly,

θ̇k(t0)− θ̇i(t0) ≥ 0. (3.5)

Utilizing equation (1.11), we derive

θ̇k(t0)− θ̇i(t0) = ωk − ωi +
K

N

n∑
ℓ=1

(max{0, sin(θℓ − θk)} −max{0, sin(θℓ − θi)})

+
K

N

m∑
ℓ=1

(sin(ϕℓ − θk)− sin(ϕℓ − θi))

= ωk − ωi +
K

N

n∑
ℓ=1

(max{0, sin(θℓ − θk)} −max{0, sin(θℓ − θi)}) (4.5)

− 2K

N
sin

(
θk − θi

2

) m∑
ℓ=1

cos

(
ϕℓ −

θk + θi
2

)
. (4.6)

Given the definitions of θk and θi, for any 1 ≤ ℓ ≤ m,

ϕℓ(t0)−
θk(t0) + θi(t0)

2
≤ θk(t0)− θi(t0)

2
=

π − α

2
. (4.7)

Thus,

cos

(
ϕℓ(t0)−

θk(t0) + θi(t0)

2

)
≥ cos

(
π − α

2

)
> 0. (4.8)

Furthermore, as D(Θ(t),Φ(t)) < π − α for all t ≤ t0, and with θk being the oscillator with the largest
phase at t0, sin(θℓ − θk) ≤ 0 for all ℓ ∈ {1, 2, . . . , n}, hence max{0, sin(θℓ − θk)} = 0. At t = t0,
applying (4.1), we find

θ̇k(t0)− θ̇i(t0) ≤ D(Ω1,Ω2)−
2K

N
m sin

(
π − α

2

)
cos

(
π − α

2

)
(4.9)

= D(Ω1,Ω2)−
K

N
m sinα < 0, (4.10)

which leads to a contradiction.
Case 2: Suppose D(Θ(t0),Φ(t0)) = θk(t0)−ϕi(t0) for some k ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . ,m}

(the case D(Θ(t0),Φ(t0)) = ϕk(t0)− θi(t0) for some k ∈ {1, 2, . . . ,m} and i ∈ {1, 2, . . . , n} is similar).
By the argument in (4.8), we have

θ̇k(t0)− ϕ̇i(t0) = ωk − νi +
K

N

n∑
ℓ=1

(max{0, sin(θℓ − θk)} − sin(θℓ − ϕi)) (4.11)

+
K

N

m∑
ℓ=1

(sin(ϕℓ − θk)−max{0, sin(ϕℓ − ϕi)}) (4.12)

≤ D(Ω1,Ω2) +
K

N

m∑
ℓ=1

(sin(ϕℓ − θk)− sin(ϕℓ − ϕi)) (4.13)

≤ D(Ω1,Ω2)−
K

N
m sinα < 0, (4.14)
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which leads to a contradiction.
Step 2: For (4.4), suppose D(Θ(t0),Φ(t0)) = θk(t0)− θi(t0) ≥ α for some k, i ∈ {1, 2, . . . , n} (the

same logic applies to the other cases). From (4.9), we have

θ̇k(t0)− θ̇i(t0) ≤ D(Ω1,Ω2)−
K

N
m sinα < 0. (4.15)

This means D(Θ(t),Φ(t)) decreases at a rate faster than K
Nm sinα−D(Ω1,Ω2). If D(Θ(t0),Φ(t0)) =

θk(t0)− θi(t0) ≥ α, it implies that

D(Θ(t),Φ(t)) < α, for t > T1 :=
π − 2α

K
Nm sinα−D(Ω1,Ω2)

. (4.16)

Lemma 4.2. Let (Θ(t),Φ(t)) satisfy the dynamics described by (1.11). Assume there exists t0 such
that D(Θ(t),Φ(t)) < α for all t > t0. If ωk > ωi, then there exists Tk,i such that

θk(t) > θi(t), for all t > Tk,i. (4.17)

If ωk = ωi, then there exists a time Tk,i such that one of the following holds:

θk(t) > θi(t), for all t > Tk,i, (4.18)

θk(t) = θi(t), for all t > Tk,i, (4.19)

θk(t) < θi(t), for all t > Tk,i. (4.20)

An analogous assertion holds for Φ(t), and we use Gk,i to denote the counterpart of Tk,i.

Proof. We first consider the case where ωk > ωi. Suppose θk(t) > θi(t) at any t1 > t0. We claim that
θk(t) > θi(t) for all t ≥ t1. To prove by contradiction, assume there exists t′ > t1 where θk(t

′) = θi(t
′),

marking the first instance of equality. Consequently,

θ̇k(t
′)− θ̇i(t

′) ≤ 0. (4.21)

However, subtracting the derivatives of the k-th and i-th oscillators from (1.11) yields

θ̇k(t
′)− θ̇i(t

′) = ωk − ωi > 0, (4.22)

which is a contradiction, we then verify our claim.
Next, if θk(t0)− θi(t0) > 0, the case is already settled. Otherwise, if θk(t0)− θi(t0) ≤ 0, we find

θ̇i(t)− θ̇k(t) = (ωi − ωk) +
K

N

(
m∑
ℓ=1

max{0, sin(ϕℓ − ϕi)} −max{0, sin(ϕℓ − ϕk)}

)

+
K

N

(
n∑

ℓ=1

sin(θℓ − ϕi)−
n∑

ℓ=1

sin(θℓ − ϕk)

)
. (4.23)

Given D(Θ(t),Φ(t)) < α < π
2 ,

θ̇i(t)− θ̇k(t) ≤ ωi − ωk < 0, (4.24)

confirming that θk(t)− θi(t) increases faster than ωk − ωi. Thus, we can define

Tk,i = t0 +max

{
0,

θk(t0)− θi(t0)

ωk − ωi

}
.

For the case where ωk = ωi, consider two subcases. If θk(t0) = θi(t0), then applying (1.11), we
have

θk(t) = θi(t), for all t ≥ Tk,i := t0. (4.25)

Otherwise, without loss of generality, assume θk(t0) > θi(t0). If (4.18) does not hold for Tk,i := t0,
then there must exist a time t1 such that θk(t1) = θi(t1). According to (1.11) again, this implies that
θk(t) = θi(t) for all t ≥ Tk,i := t1, thus establishing statement (4.20).

An analogous assertion holds for Φ(t). This completes the proof.
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Building upon the results of Lemmas 4.1 and 4.2, we derive the subsequent lemma.

Lemma 4.3 (Well-ordering Lemma). Let (Θ(t),Φ(t)) be governed by (1.11). Assuming (4.1) and
(4.2) are satisfied, there exists T ∗ > 0 such that

• D(Θ(t),Φ(t)) < α for all t > T .

• If ωk > ωi, then
θk(t) > θi(t), for all t > T ∗. (4.26)

• If ωk = ωi, then one of the following holds:

θk(t) > θi(t), for all t > T ∗, (4.27)

θk(t) = θi(t), for all t > T ∗, (4.28)

θk(t) < θi(t), for all t > T ∗. (4.29)

An analogous well-order property holds for Φ(t) with respect to this T ∗.

Proof. Assume t0 is the time T established in Lemma 4.1. Applying Lemma 4.2, we consider every
pair (θk(t), θi(t)) where ωk ≥ ωi, and each pair (ϕk(t), ϕi(t)) where νk ≥ νi. We then determine T ∗ as

T ∗ := max

(
max

(k,i):ωk≥ωi

Tk,i, max
(k,i):νk≥νi

Gk,i

)
(4.30)

to validate the lemma, where Tk,i and Gk,i are defined in Lemma 4.2.

We are now ready to derive Theorem 1.12, as a direct result of the following lemma.

Lemma 4.4. Consider the system governed by (1.11) with initial conditions satisfying (4.1) and (4.2).
Define the functions

f(t) = max
1≤i≤n
1≤j≤m

{θ̇i(t), ϕ̇j(t)}, (4.31)

g(t) = min
1≤i≤n
1≤j≤m

{θ̇i(t), ϕ̇j(t)}. (4.32)

Then,

lim
t→∞

f(t) = lim
t→∞

g(t), (4.33)

which implies that limt→∞ D(Θ̇(t), Φ̇(t)) = 0.

Proof. Assume, without loss of generality, that

ω1 ≤ ω2 ≤ . . . ≤ ωn,

ν1 ≤ ν2 ≤ . . . ≤ νm.

Step 1: We first establish the existence of limt→∞ f(t).
Let T ∗ be as defined in (4.30). For any fixed t > T ∗, suppose f(t) = θ̇i(t) for some 1 ≤ i ≤ n. (The

case where f(t) = ϕ̇j(t) for some 1 ≤ j ≤ m is analogous.) By Lemma 4.3, there exists 1 ≤ i′ ≤ n such
that

θℓ(t
′) ≤ θi(t

′), for all t′ > T ∗ and 1 ≤ ℓ ≤ i′, (4.34)

θℓ(t
′) > θi(t

′), for all t′ > T ∗ and i′ < ℓ ≤ n. (4.35)

Thus, we can express θ̇i(t) as

θ̇i(t) = ωi +
K

N

(
n∑

ℓ=1

max{0, sin(θℓ − θi)}+
m∑
ℓ=1

sin(ϕℓ − θi)

)

= ωi +
K

N

(
n∑

ℓ=i′+1

sin(θℓ − θi) +

m∑
ℓ=1

sin(ϕℓ − θi)

)
. (4.36)
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Differentiating f(t) with respect to t, we obtain

f ′(t) =
K

N

(
n∑

ℓ=i′+1

cos(θℓ − θi)(θ̇ℓ(t)− θ̇i(t)) +

m∑
ℓ=1

cos(ϕℓ − θi)(ϕ̇ℓ(t)− θ̇i(t))

)
. (4.37)

By Lemma 4.1, both |θℓ−θi| and |ϕℓ−θi| are less than α < π
2 . Therefore, cos(θℓ−θi) and cos(ϕℓ−θi) are

greater than cos(α) > 0. Additionally, since oscillator i has the highest frequency, both (θ̇ℓ(t)− θ̇i(t))
and (ϕ̇ℓ(t) − θ̇i(t)) are less than or equal to zero. Consequently, f ′(t) ≤ 0. Moreover, by (1.11), f(t)
is bounded below by

min(Ω1,Ω2)−K.

Thus, by the completeness of the real numbers, limt→∞ f(t) exists. Similarly, g(t) is monotone in-
creasing to limt→∞ g(t).

Step 2: Next, we prove that limt→∞ f(t) = limt→∞ g(t). Suppose, for the sake of contradiction,
that

f̄ := lim
t→∞

f(t) > lim
t→∞

g(t) = ḡ. (4.38)

By the monotonicity of f and g, we can choose T0 such that

f̄ +
f̄ − ḡ

2
≥ f(t) ≥ f̄ , for all t > T0, (4.39)

ḡ − f̄ − ḡ

2
≤ g(t) ≤ ḡ, for all t > T0. (4.40)

Subtracting (4.40) from (4.39) yields

f̄ − ḡ ≤ f(t)− g(t) ≤ 2(f̄ − ḡ), for all t > T0. (4.41)

Fix t > max{T ∗, T0}. If g(t) = ϕj(t) for some 1 ≤ j ≤ m, then by the argument in (4.37), we have

f ′(t)− g′(t) ≤ f ′(t)

≤ K

N
cos(α)(ϕ̇j(t)− θ̇i(t))

≤ K

N
cos(α)(ḡ − f̄). (4.42)

On the other hand, if g(t) = θj(t) for some 1 ≤ j ≤ n, then by the argument in (4.37) again, we have

f ′(t)− g′(t) ≤ K

N
cos(α)

(
(ϕ̇1(t)− θ̇i(t))− (ϕ̇1(t)− θ̇j(t))

)
=

K

N
cos(α)(θ̇j(t)− θ̇i(t))

≤ K

N
cos(α)(ḡ − f̄). (4.43)

In both cases, f(t)− g(t) decreases at a rate faster than K
N cos(α)(f̄ − ḡ).

Setting t = max{T ∗, T0}+ 3
2 ·

1
K
N cos(α)

yields a contradiction to (4.41). Therefore, we conclude that

f̄ = ḡ, ensuring phase synchronization.

5 Numerical Results

In this section, we present numerical simulations for both the ReLU variant of the Kuramoto model on
dense networks, described by (1.6), and the ReLU variant of the social network model, given by (1.11).
For the dense networks, we also include a comparative analysis with the synchronization behavior
observed in the classical Kuramoto model (1.4). Additionally, we provide an illustrative example of a
scenario that does not meet the conditions outlined in our theorems, yet still achieves synchronization.
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5.1 Identical Oscillators on Dense Networks

As stated in Theorem 1.10, when D(Θ(0)) < π and the adjacency matrix A is connected, Θ(t) achieves
complete phase synchronization. To illustrate this, we use numerical results (see Figure 1). Specifically,
we examine the coupling behavior of 10 oscillators. The initial positions of the oscillators are uniformly
generated from the interval [0, 5

6π], with θ1(0) = 0 and θ10(0) = 5
6π to ensure that D(Θ(0)) = 5

6π.
The connections between oscillators are shown in Figure 1a. As guaranteed by Theorem 1.10, Θ(t)
achieves complete phase synchronization.

Next, we compare the results of the ReLU version (1.6) with those of the classical Kuramoto model
(1.4). Given that µ = 8

9 > 0.75, and based on the findings of Kassabov et al. [24], the classical
Kuramoto model (1.4) also achieves complete phase synchronization. As shown in Figure 2, the
classical model converges faster than the ReLU version.

5.2 Non-identical Oscillators on Dense Networks

In this subsection, we investigate the case of non-identical oscillators, with parameters set to N = 10,
µ = 8

9 , and α = π
3 . The initial natural frequencies and phases are specified as

Ω = (0.250, 0.138, 0.088, 0.076, 0.044,−0.005,−0.031,−0.167,−0.193,−0.200),

Θ(0) = (3.902, 4.905, 4.454, 4.427, 5.609, 3.572, 5.518, 5.429, 5.498, 4.081).

The network topology connecting the oscillators is depicted in Figure 3a.
Hence the initial conditions meet the following criteria:

D(Ω) ≈ 0.450 ≤ 7.698 ≈ µN sinα,

D(Θ(0)) ≈ 2.036 ≤ 2.094 ≈ π − α,

max
1≤i≤10

(|ωi|) ≈ 0.250 ≤ 0.262 ≈
√

µ− 3

4
+ µ− 1.

Consequently, the conditions of Theorem 1.5 and Theorem 1.11 are satisfied, and their conclusions can
be applied to this scenario.

Figure 3 illustrates the synchronization outcomes, whereas Figure 4 compares these results with
those obtained using the classical Kuramoto model. Consistent with the observations in Figure 1, the
classical model achieves frequency synchronization more rapidly than the ReLU-modified version.

5.3 Social Network

We simulate the interaction between two groups of oscillators as described by the social network model
(1.11). Group 1 consists of n = 2 members, while Group 2 has m = 3 members, resulting in a total of
N = 5 oscillators. The coupling strength is set to K = 1, and the angle α is set to π

4 .
The initial natural frequencies and phases for the groups are

Ω1 = (0, 0.108),

Ω2 = (0.078, 0.247, 0.264),

Θ(0) = (3.103, 4.103),

Φ(0) = (5.026, 3.099, 2.864).

These initial conditions ensure that D(Ω1,Ω2) = 0.264, which is less than 2
5 sin(

π
4 ) ≈ 0.283, and

D(Θ(0),Φ(0)) = 2.162, which is less than π − π
4 ≈ 2.356. Thus, the requirements of Theorem (1.12)

are satisfied.
Figure 5 presents the results of our simulation. These results demonstrate that frequency synchro-

nization is achieved, which aligns with our theoretical predictions.

5.4 Synchronization Beyond Our Theorem

In this section, we present two sets of numerical simulations: one demonstrating synchronization under
conditions that do not strictly satisfy our theoretical results, and another exploring the dynamics within
a social network model.
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(a) Visualization of the connections between os-
cillators.

(b) Evolution of phases Θ(t). (c) Evolution of frequency Θ̇(t).

(d) Diameter of phase D(Θ(t)). (e) Diameter of frequency D(Θ̇(t)).

Figure 1: Solution of the ReLU version of the Kuramoto model on dense networks (1.6) with N = 10,
D(Ω) = 0, D(Θ(0)) = 5

6π, µ = 8
9 , and the connection is visualized as in Figure 1a.
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(a) Diameter of phase D(Θ(t)). (b) Diameter of frequency D(Θ̇(t)).

Figure 2: Comparison of the ReLU version of the homogeneous Kuramoto model (1.6) and the classical
homogeneous Kuramoto model (1.4).

First, we consider a case where the system achieves synchronization despite not fulfilling the con-
ditions specified in our theorems. Following a similar setup to that in Section 5.1, we examine the
behavior of 10 oscillators with initial phases uniformly distributed over the interval [0, 7

6π]. The phases
are set such that θ1(0) = 0 and θ10(0) =

7
6π, ensuring that the initial phase difference isD(Θ(0)) = 15

8 π.
The connectivity structure of the oscillators is depicted in Figure 6a.

The results, presented in Figure 6, reveal that the system achieves both phase and frequency
synchronization, even with a relatively low connectivity parameter µ = 2

9 .
Next, we explore the non-identical case, where the parameters are set to N = 10 and µ = 2

9 . The
initial natural frequencies and phases of the oscillators are given by:

Ω = (0,−0.098,−0.182,−0.360,−0.369,−0.390,−0.524,−0.593,−0.635,−0.984),

Θ(0) = (2.098, 2.176, 2.564, 2.348, 1.071, 1.296, 2.579, 0.876, 2.528, 2.312).

The network structure is shown in Figure 7a.
Under these conditions, D(Ω) = 0.984 exceeds the connectivity parameter µ = 2

9 , indicating that
the system does not meet the criteria outlined in Theorem 1.11. Nevertheless, as illustrated in Figure
7, the oscillators still achieve frequency synchronization.

Finally, we examine the social network model described by (1.11), focusing on the interaction
between two groups of oscillators. Group 1 comprises n = 2 members, while Group 2 consists of m = 3
members, for a total of N = 5 oscillators. The initial natural frequencies and phases are specified as
follows:

Ω1 = (0, 0.028),

Ω2 = (0.783, 0.725, 0.334),

Θ(0) = (1.693, 1.494),

Φ(0) = (0.750, 0.296, 0.393).

In this case, D(Ω1,Ω2) = 0.783 exceeds the connectivity threshold µ = 2
5 , meaning that the

system does not satisfy the requirements of Theorem 1.12. However, as shown in Figure 8, the phases
(Θ(t),Φ(t)) still achieve frequency synchronization, illustrating the robustness of the model even under
less favorable conditions.
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(a) Visualization of the connections between os-
cillators.

(b) Evolution of phases Θ(t). (c) Evolution of frequency Θ̇(t).

(d) Diameter of phase D(Θ(t)). (e) Diameter of frequency D(Θ̇(t)).

Figure 3: Solution of the ReLU version of the nonhomogeneous Kuramoto model on dense networks
(1.4) with N = 10, α = π

3 and µ = 8
9 , and the connection is visualized as in Figure 3a.

21



(a) Diameter of phase D(Θ(t)). (b) Diameter of frequency D(Θ̇(t)).

Figure 4: Comparison of the ReLU version of the nonhomogeneous Kuramoto model (1.6) and the
classical nonhomogeneous Kuramoto model (1.4).

(a) Evolution of phases (Θ(t),Φ(t)). (b) Evolution of frequency (Θ̇(t), Φ̇(t)).

(c) Diameter of phases D(Θ(t),Φ(t)). (d) Diameter of frequency D(Θ̇(t), Φ̇(t)).

Figure 5: Solution of (1.11) with n = 2, m = 3, N = 5, K = 1, α = π
4 .

22



(a) Visualization of the connections between os-
cillators.

(b) Evolution of phases Θ(t). (c) Evolution of frequency Θ̇(t).

(d) Diameter of phase D(Θ(t)). (e) Diameter of frequency D(Θ̇(t)).

Figure 6: Solution of the ReLU version of the Kuramoto model on dense networks (1.6) with N = 10,
D(Ω) = 0, D(Θ(0)) = 7

6π, µ = 1
9 , and the connection is visualized as in Figure 6a.
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(a) Visualization of the connections between os-
cillators.

(b) Evolution of phases Θ(t). (c) Evolution of frequency Θ̇(t).

(d) Diameter of phase D(Θ(t)). (e) Diameter of frequency D(Θ̇(t)).

Figure 7: Solution of the ReLU version of the nonhomogeneous Kuramoto model on dense networks
(1.4) with N = 10 and µ = 2

9 , and the connection is visualized as in Figure 7a.
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(a) Evolution of phases (Θ(t),Φ(t)). (b) Evolution of frequency (Θ̇(t), Φ̇(t)).

(c) Diameter of phases D(Θ(t),Φ(t)). (d) Diameter of frequency D(Θ̇(t), Φ̇(t)).

Figure 8: Solution of (1.11) with n = 2, m = 3, N = 5, K = 1.
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[5] György Buzsáki. Rhythms of the Brain. Oxford university press, 2006.

[6] Shih-Hsin Chen, Chia-Chi Chu, Chun-Hsiung Hsia, and Sunghwan Moon. Frequency synchroniza-
tion of heterogeneous second-order forced kuramoto oscillator networks: A differential inequality
approach. IEEE Transactions on Control of Network Systems, 10(2):530–543, 2022.

[7] Shih-Hsin Chen, Chia-Chi Chu, Chun-Hsiung Hsia, and Ming-Cheng Shiue. Synchronization of
heterogeneous forced first-order kuramoto oscillator networks: A differential inequality approach.
IEEE Transactions on Circuits and Systems I: Regular Papers, 69(2):757–770, 2021.

[8] Shih-Hsin Chen, Chun-Hsiung Hsia, and Ting-Yang Hsiao. Complete and partial synchronization
of two-group and three-group kuramoto oscillators. SIAM Journal on Applied Dynamical Systems,
23(3):1720–1765, 2024.

[9] Donald Cox and Marcel Fafchamps. Extended family and kinship networks: economic insights
and evolutionary directions. Handbook of development economics, 4:3711–3784, 2007.

[10] Jiu-Gang Dong and Xiaoping Xue. Synchronization analysis of kuramoto oscillators. Communi-
cations in Mathematical Sciences, 11(2):465–480, 2013.

[11] Irving R Epstein and John A Pojman. An introduction to nonlinear chemical dynamics: oscilla-
tions, waves, patterns, and chaos. Oxford university press, 1998.

[12] G Filatrella, Niels Falsig Pedersen, and K Wiesenfeld. Generalized coupling in the kuramoto
model. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 75(1):017201, 2007.

[13] Vincenzo Fioriti, Silvia Ruzzante, Elisa Castorini, Elena Marchei, and Vittorio Rosato. Stability
of a distributed generation network using the kuramoto models. In International workshop on
critical information infrastructures security, pages 14–23. Springer, 2008.

[14] Leon Glass and Michael C Mackey. From clocks to chaos: The rhythms of life. Princeton University
Press, 1988.

[15] Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, and Se Eun Noh. Synchronization conditions of a
mixed kuramoto ensemble in attractive and repulsive couplings. Journal of Nonlinear Science,
31:1–34, 2021.

[16] John Hoddinott. Rotten kids or manipulative parents: Are children old age security in western
kenya? Economic Development and Cultural Change, 40(3):545–565, 1992.

26



[17] Frank C Hoppensteadt and Eugene M Izhikevich. Weakly connected neural networks, volume 126.
Springer Science & Business Media, 2012.

[18] Chun-Hsiung Hsia, Chang-Yeol Jung, and Bongsuk Kwon. On the synchronization theory of
kuramoto oscillators under the effect of inertia. Journal of Differential Equations, 267(2):742–
775, 2019.

[19] Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon, and Sunghwan Moon. Synchronization
of kuramoto–sakaguchi model with the distributed time-delayed interactions. Chaos, Solitons &
Fractals, 179:114422, 2024.

[20] Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon, and Yoshihiro Ueda. Synchronization of
kuramoto oscillators with time-delayed interactions and phase lag effect. Journal of Differential
Equations, 268(12):7897–7939, 2020.

[21] Chun-Hsiung Hsia and Chung-En Tsai. On the synchronization analysis of a strong competition
kuramoto model. arXiv preprint arXiv:2404.01000, 2024.

[22] David J Jörg. Stochastic kuramoto oscillators with discrete phase states. Physical Review E,
96(3):032201, 2017.

[23] Alexander C Kalloniatis and Mathew L Zuparic. Fixed points and stability in the two-network
frustrated kuramoto model. Physica A: Statistical Mechanics and its Applications, 447:21–35,
2016.

[24] Martin Kassabov, Steven H Strogatz, and Alex Townsend. Sufficiently dense kuramoto networks
are globally synchronizing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 31(7), 2021.

[25] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Interna-
tional symposium on mathematical problems in theoretical physics: January 23–29, 1975, kyoto
university, kyoto/Japan, pages 420–422. Springer, 1975.

[26] John Laitner. Random earnings differences, lifetime liquidity constraints, and altruistic intergen-
erational transfers. Journal of Economic Theory, 58(2):135–170, 1992.

[27] Shuyang Ling. On the critical coupling of the finite kuramoto model on dense networks. arXiv
preprint arXiv:2004.03202, 2020.

[28] Shuyang Ling, Ruitu Xu, and Afonso S Bandeira. On the landscape of synchronization networks:
A perspective from nonconvex optimization. SIAM Journal on Optimization, 29(3):1879–1907,
2019.

[29] MA2539317 Lohe. Non-abelian kuramoto models and synchronization. Journal of Physics A:
Mathematical and Theoretical, 42(39):395101, 2009.

[30] Jianfeng Lu and Stefan Steinerberger. Synchronization of kuramoto oscillators in dense networks.
Nonlinearity, 33(11):5905, 2020.

[31] Yuri Maistrenko, Bogdan Penkovsky, and Michael Rosenblum. Solitary state at the edge of syn-
chrony in ensembles with attractive and repulsive interactions. Physical Review E, 89(6):060901,
2014.

[32] Mark Newman. Networks. Oxford university press, 2018.

[33] Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths. Synchronization. Cambridge university
press, 12, 2001.

[34] Marc Szydlik. Intergenerational solidarity and conflict. Journal of Comparative Family Studies,
39(1):97–114, 2008.

[35] Richard Taylor. There is no non-zero stable fixed point for dense networks in the homogeneous
kuramoto model. Journal of Physics A: Mathematical and Theoretical, 45(5):055102, 2012.

27



[36] Erik Teichmann and Michael Rosenblum. Solitary states and partial synchrony in oscillatory
ensembles with attractive and repulsive interactions. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29(9), 2019.

[37] Alex Townsend, Michael Stillman, and Steven H Strogatz. Dense networks that do not synchronize
and sparse ones that do. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(8), 2020.

[38] JL Van Hemmen and WF Wreszinski. Lyapunov function for the kuramoto model of nonlinearly
coupled oscillators. Journal of Statistical Physics, 72:145–166, 1993.

[39] Seong-Gyu Yang, Hyunsuk Hong, and Beom Jun Kim. Asymmetric dynamic interaction shifts
synchronized frequency of coupled oscillators. Scientific Reports, 10(1):2516, 2020.

[40] Seong-Gyu Yang, Jong Il Park, and Beom Jun Kim. Discontinuous phase transition in the ku-
ramoto model with asymmetric dynamic interaction. Physical Review E, 102(5):052207, 2020.

[41] Ryosuke Yoneda, Tsuyoshi Tatsukawa, and Jun-nosuke Teramae. The lower bound of the net-
work connectivity guaranteeing in-phase synchronization. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 31(6), 2021.

28


	Introduction
	Homogeneous Kuramoto Model on Dense Networks
	ReLU Version of the Kuramoto Model
	ReLU Version of the Kuramoto Model on Dense Network
	Social Network

	Identical Oscillators on Dense Networks
	Non-identical Oscillators on Dense Networks
	Social Network
	Numerical Results
	Identical Oscillators on Dense Networks
	Non-identical Oscillators on Dense Networks
	Social Network
	Synchronization Beyond Our Theorem


